Teburin Abubuwan Ciki
1. Gabatarwa
Tsarin kwamfuta-kwakwalwa (BCIs) a al'ada ya dogara ne akan tsarin hangen nesa, ji, ko tunanin motsi waɗanda ke buƙatar horar da mai amfani da cikakken iyawar hankali. Wannan bincike ya gabatar da wata sabuwar hanya ta amfani da fasahar nuna taɗi ta ultrasonic mai hawaye (AUTD) mara lamba don ƙirƙirar tsarin BCI mafi sauƙin isa da tsafta.
Mahimman Fahimta
- Motsa rai mara lamba yana kawar da matsalolin taɗa fata
- An yi amfani da wurare shida na tafin hannu don motsa rai na jin taɗi
- Kwatanta da na'urori masu jujjuyawar girgiza ta al'ada
- Mahalarta 13 masu lafiya a cikin gwaje-gwajen kan layi
2. Kayan Aiki da Hanyoyi
2.1 Tsarin Gwaji
Masu amfani da BCI guda goma sha uku maza masu sa kai (matsakaicin shekaru 28.54 ± 7.96) sun shiga cikin gwaje-gwajen da aka gudanar a cibiyoyin bincike da yawa a Japan. Binciken ya bi ka'idojin sanarwar WMA na Helsinki kuma ya sami amincewar ɗa'a.
Mahalarta
13
Masu sa kai maza
Matsakaicin Shekaru
28.54
± 7.96 shekaru
Yawan Motsa Rai
50
Hz
2.2 Fasahar AUTD
Mai samar da motsa rai na AUTD yana samar da motsa rai mara lamba ta hanyar mai da hankali kan ultrasound ta amfani da dabarar jeri-jeri. Ana ƙididdige matsa lamba na radiation $P_r$ kamar haka:
$$P_r = \frac{I}{c} = \frac{p^2}{\rho c}$$
inda $I$ yake nufin ƙarar sauti, $c$ gudun sauti, $p$ matsa lamba na sauti, kuma $\rho$ yawan iska. Na'urar tana aiki sau 40 ƙasa da ƙayyadaddun shayar da fata, yana tabbatar da aminci.
2.3 Sarrafa Siginar
An sarrafa siginonin EEG ta amfani da algorithm ɗin sararin samaniya na gama-gari (CSP) don fitar da siffofi. Ana samun matatar sarari $W$ ta hanyar warware matsalar eigenvalue ta gama gari:
$$\Sigma_1 W = \Lambda \Sigma_2 W$$
inda $\Sigma_1$ da $\Sigma_2$ suke matakan haɗin kai na azuzuwan biyu.
3. Sakamako da Ƙarshe
3.1 Kwatancen Aiki
BCI na tushen AUTD (autdBCI) ya nuna ayyuka masu kama da na BCI na tushen mai jujjuyawar girgiza ta al'ada (vtBCI) a cikin gwaje-gwajen kan layi. Dukansu tsarin sun sami daidaiton rarrabuwa sama da matakin dama, suna tabbatar da yuwuwar BCI na taɗi mara lamba.
3.2 Binciken Ƙididdiga
Binciken ƙididdiga ya nuna babu wani bambanci mai mahimmanci a daidaiton rarrabuwa tsakanin tsarin autdBCI da vtBCI (p > 0.05), yana nuna cewa motsa rai mara lamba zai iya tada martanin kwakwalwa na jin taɗi yadda ya kamata don aikace-aikacen BCI.
4. Binciken Fasaha
Wannan bincike yana wakiltar ci gaba mai mahimmanci a fasahar BCI mara cutarwa. Hanyar AUTD tana magance manyan iyakokin BCI na taɗi na al'ada, musamman game da tsafta da kwanciyar hankali don amfani na dogon lokaci. Kama da tasirin canjin CycleGAN akan ayyukan fassarar hoto (Zhu et al., 2017), wannan aikin ya nuna yadda sabbin hanyoyin motsa rai na hankali zasu ia faɗaɗa iyawar BCI.
Fasahar ultrasound ta jeri-jeri da aka yi amfani da ita tana raba ka'idoji tare da tsarin hoto na ultrasound na likita, amma tana amfani da su cikin ƙirƙira don motsa taɗi. Bisa ga bincike daga IEEE Transactions on Haptics, haptics na tsakiya na ultrasound ya nuna alƙawari a cikin aikace-aikace daban-daban, amma wannan binciken yana ɗaya daga cikin farkon aiwatar da shi don dalilan BCI.
Tushen lissafi na tasirin matsa lamba na radiation yana bin ƙa'idodin sauti da aka kafa, inda ƙarfin kowace yanki na yanki $F/A$ yake daidai da ƙarfin sauti $I$: $F/A = I/c$. Wannan ƙa'idar ta zahiri tana ba da damar motsa rai mara lamba wanda ya zama ainihin ƙirƙira na wannan binciken.
Daga mahangar sarrafa siginar, binciken ya ginu akan hanyoyin rarrabuwar EEG da aka kafa, musamman sifofin sararin samaniya na gama-gari (Ramoser et al., 2000), yana daidaita su don sabbin ƙarfin motsa rai na jin taɗi da aka samar ta hanyar motsa rai na ultrasonic.
5. Aiwar Lambar
A ƙasa akwai sauƙaƙan aiwar lambar tsarin sarrafa AUTD:
class AUTDController:
def __init__(self, transducer_count):
self.transducers = [Transducer() for _ in range(transducer_count)]
self.frequency = 50 # Hz
def set_focal_point(self, x, y, z):
"""Saita ma'anar mai da hankali ta amfani da dabarar jeri-jeri"""
phases = self.calculate_phases(x, y, z)
for i, transducer in enumerate(self.transducers):
transducer.set_phase(phases[i])
def calculate_phases(self, x, y, z):
"""Ƙididdige sauye-sauyen lokaci don ma'anar mai da hankali"""
phases = []
for transducer in self.transducers:
distance = self.calculate_distance(transducer.position, (x,y,z))
phase_shift = (distance % wavelength) * 360 / wavelength
phases.append(phase_shift)
return phases
def generate_stimulus(self, pattern, duration):
"""Samar da tsarin motsa taɗi"""
for position in pattern:
self.set_focal_point(*position)
self.activate_transducers(duration)
6. Aikace-aikace na Guba
Tsarin AUTD-BCI yana buɗe yuwuwar aikace-aikace masu yawa na gaba:
- Gyaran Lafiya: Don marasa lafiya masu kulle-kulle waɗanda ba za su iya amfani da BCI na al'ada ba
- Wasa da Nishaɗi: Ƙarfafa gogewar nutsewa tare da martanin taɗi mara lamba
- Gaskiyar Zamani Haɗa kai da tsarin VR don gogewar hankali da yawa
- Fasaha Taimako: Tsarin sadarwa ga mutane masu nakasa mai tsanani
Hanyoyin bincike na gaba sun haɗa da inganta ƙudurin sarari, haɓaka iyawar motsa rai mai yawa, da haɗa kai da wasu hanyoyin BCI don tsarin gauraye.
7. Bayanan Kafa
- Hamada, K., Mori, H., Shinoda, H., & Rutkowski, T. M. (2014). Tsarin Kwamfuta-Kwakwalwa Mai Nuna Taɗi ta Ultrasonic Mai Hawaye. arXiv:1404.4184
- Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Fassarar Hoto-zuwa-Hoto mara Haɗin gwiwa ta amfani da Cibiyoyin Adawa na Zagayowar-Zagayowar. IEEE ICCV
- Ramoser, H., Muller-Gerking, J., & Pfurtscheller, G. (2000). Mafi kyawun tace sarari na gwaji ɗaya EEG yayin da ake tunanin motsin hannu. IEEE Transactions on Rehabilitation Engineering
- IEEE Transactions on Haptics. (2020). Ci gaba a Fasahar Haptic ta Tsakiya-Sama
- Mori, H., da sauransu. (2012). Motsa Rai na Vibrotactile don Kwamfuta-Kwakwalwa. Jaridar Injiniyan Jijiya